

Assessing the Risk of Overpressure from Liquid Thermal Expansion

Stephanie Cicchini, Jeff Zhang Wood Process Solutions

Outline

Introduction

- Liquid Thermal Expansion
- Background on Metocean (Meteorology & Oceanography)
- Modelling
 - Methodology
 - Benchmarking against Field Data
- Applications & Mitigation Measures
 - Application 1: Subsea Tree Cavity
 - Application 2: Offshore Hydrotesting Activities
 - Application 3: Trapped Fluids during Operation

Introduction

Metocean – Location of Various Fields in WA

(Ref. Hengesh, J.V., Dirstein, J.K. and Stanley, A.J., "Landslide Geomorphology Along the Exmouth Plateau Continental Margin, North West Shelf, Australia", Published in the Australian Geomechanics Journal, Special Offshore Edition, December 2013, p.71-92.)

• • •

Metocean – Diurnal Tides

Modelling

Contributing Factors to Liquid Thermal Expansion

Fluid Properties

Liquids	Uses
MEG	 Commonly used as inhibitor to prevent/reduce hydrate formation Used for hydrotesting / leak testing Flooding medium after subsea installation
Water	 Used for hydrotesting / leak testing Flooding medium after subsea installation

Required fluid properties:

- α_v is the cubic expansion coefficient of the liquid, expressed in 1/°C (1/°F);
- χ is the isothermal compressibility coefficient of the liquid, expressed in 1/kPa (1/psi);

Pipe Properties

Wall Material	Uses
Steel	 Pipeline Main production system piping Umbilicals carrying inhibitors and chemicals for subsea injection

Required pipe properties:

- $\alpha_{\rm I}$ is the linear expansion coefficient of metal wall, expressed in 1/°C (1/°F);
- *d* is the internal pipe diameter, expressed in metres (inches);
- δ_{W} is the metal wall thickness, expressed in metres (inches);
- E is the modulus of elasticity for the metal wall at T₂, expressed in kPa (psi);
- μ is Poisson's ratio, usually 0,3;

Equation for Liquid Thermal Expansion

API 521 methodology used to give the pressure increase in a closed vessel due to thermal expansion

$$p_2 = p_1 + \frac{(T_2 - T_1)(\alpha_v - 3\alpha_1) - \left(\frac{q_{\parallel} \cdot t}{v}\right)}{\chi + \left(\frac{d}{2E \cdot \delta_w}\right)(2, 5 - 2\mu)}$$

where

- p2 is the final gauge pressure of blocked-in, liquid-full equipment, expressed in kPa (psi);
- p1 is the initial gauge pressure of blocked-in, liquid-full equipment, expressed in kPa (psi);
- T2 is the final temperature of blocked-in, liquid full equipment, expressed in °C (°F);
- T1 is the initial temperature of blocked-in, liquid full equipment, expressed in °C (°F);
- α_v is the cubic expansion coefficient of the liquid, expressed in 1/°C (1/°F);
- α_1 is the linear expansion coefficient of metal wall, expressed in 1/°C (1/°F);
- is the isothermal compressibility coefficient of the liquid, expressed in 1/kPa (1/psi);
- is the internal pipe diameter, expressed in metres (inches);
- E is the modulus of elasticity for the metal wall at T₂, expressed in kPa (psi);

- δ_W is the metal wall thickness, expressed in metres (inches);
- µ is Poisson's ratio, usually 0,3;
- q_{II} is the liquid leakage rate across the block valve seat (usually taken as 0), expressed in m³/s (in³/s);
- is the elapsed time for leakage, expressed in seconds;
- V is the pipe volume, expressed in cubic metres (cubic inches).

Equation for Liquid Thermal Expansion

Benchmarking (Field Data vs Cubic EoS vs High Accuracy EoS)

Parameters

Sensitive

Change in Fluid Temperature (ΔT)

Fluid Thermal Expansivity (α_V)

Fluid Compressibility (γ)

Insulation Thickness

Not Sensitive

Wall Elasticity (E)

Diameter to Wall Thickness Ratio (D/t)

Wall Coefficient of Expansion (α_{I})

Applications and Mitigation Measures

Application 2 – Offshore Hydrotesting Activities

Requirement:

 Hydrotesting requires testing the system at high pressures for extended periods (e.g. 24 h at a holding pressure above design).

Challenge:

- Stabilizing pressure with varying seawater temperatures.
- Pressures above design, approaching burst limit.

Mitigation:

In design:

Account for liquid thermal expansion in design of subsea systems (e.g. pipelines, structures, valves). Address through bespoke procedures.

In operation:

Application 3 – Trapped Liquids during Operation

Challenge:

- Unplanned shutdown of pumps / valves
- Seawater temperature swings \rightarrow pressure increases \rightarrow possibly exceed design pressure

Approach:

– As per Application 2.

Mitigation:

In operation: Selecting an appropriate pump discharge PSV set point.
 Pressure / temperature monitoring and high alarms.

Key Take-Aways

- Liquid thermal expansion can lead to increase in pressures possible above design.
- An approach was developed to assess extent of liquid thermal expansion & possible mitigations.

- Challenge in varying seawater temperature / nearby hot production fluids resolved by:
 - Appropriate modelling techniques & accurate input data
 - Introducing mitigations

For further information, please contact Stephanie Cicchini or Jeff Zhang <u>stephanie.cicchini@woodplc.com</u> <u>jeff.zhang@woodplc.com</u>

woodplc.com