

XT Subsea Valve Skid - Life of Field Extension

AOG 2019, 14th March 2019

Dr Lev Roberts-Haritonov, General Manager, Subsea Engineering

Problem Statement

- Subsea oil field has several years of operational life remaining
- Subsea Tree (XT) Production and Annulus Master, and Wing Valves showing poor reliability pressure barriers near compromised
- Client Operator forced to plan a complete XT change out
- Diver survey resulted in very low confidence in XT tie-in point locations (5-1/8" & 2-1/16" Flanges)
 - XT Production and annulus outlet flanges found to be substantially misaligned
 - Significant uncertainty in survey data
 - ±50mm misalignment in each of x, y and z
 - $\pm 3^{\circ}$ angular misalignment in each of ϕ_{x} , ϕ_{y} , ϕ_{z}
- Neptune Subsea tasked to find solution to avoid costly production downtime and XT change-out
- A solution that would work right first time on installation

SVS is designed, manufactured and tested to API 6A, API 17D and DNV 2.7-3.

SVS System P&ID-replacement pressure barrier

SVS System Overview – Internal Components

Solution – Stage 1 of 5

- Locating position of XT tie-in points and drilling mounting points on XT frame using a bespoke template with adjustable flanges.
- The flange positions represent the "impression" of the actual XT outlet positions

Solution – Stage 2 of 5

- Recovery of drilling template to surface and interface with Mating Frame.
- Mating Frame flanges are aligned with tie-in points on XT.
- The position of the flanges on the Mating Frame then represent the actual positions of the flanges on the subsea Christmas Tree.

Solution – Stage 3 of 5

- Mating Frame interfaced with SVS to align flanges with Mating Frame and thus XT outlet position.
- The SVS will then have taken up the misalignment of the XT outlet flanges.

Positions of the two valve blocks are adjusted:

Vertically – using vertical jacking screw

Laterally – using lateral/transverse jacking screws

Rotationally – using central ball joint

Solution – Stage 4 of 5

- SVS lowered subsea and secured to pre-drilled holes on XT frame (from Stage 1).
- Flanges are already aligned and ready to be made up (no subsea alignment needed).

Solution – Stage 5 of 5

Over-trawl protective frame lowered subsea and secured

SVS installation animated sequence

Design & Analysis

- SVS underwent full design and analysis process. Considerations included:
 - Flow assurance and erosion
 - Cathodic protection
 - Lifting analysis
 - Operating conditions full thermal and pressure analysis
 - Reaction loads on XT frame
 - Effects on the existing XT flow lines

Testing

- Full Factory Acceptance Testing (FAT) & Site Integration Testing (SIT) program

Thankyou!

Questions