

Expertise. Innovation. Value.

AMOG is a leading global solutions provider to the energy, resources, defence, rail, and maritime construction industries.

LGS: An Innovative Solution for Mitigating Pipeline Free Span Fatigue

Kanishka Jayasinghe; AMOG Consulting
Peter Pezet; Matrix Composites & Engineering
Brett Phillips; Oceaneering

8 April 2019

Agenda

MAMOG

- Pipeline Free Spans
- 2. Mitigation options for free spans
- 3. LGS development and testing
- 4. Predicting VIV response
- 5. Installation challenges
- 6. Example retrofit deployment

Pipeline Free Spans

- Section of pipeline without seabed support
- > Causes:
 - Uneven seabed
 - Artificial pipeline supports
 - Changes in seabed topography

(Chee et al)

(Nordnes)

Pipeline Free Spans

- Section of pipeline without seabed support
- > Causes:
 - Uneven seabed
 - Artificial pipeline supports
 - Changes in seabed topography
- > Hook/snag risk for trawlers
- Subject to wave and current loading

(Nordnes)

Pipeline Free Spans

- Section of pipeline without seabed support
- > Causes:
 - Uneven seabed
 - Artificial pipeline supports
 - Changes in seabed topography
- > Hook/snag risk for trawlers
- Subject to wave and current loading
 - VIV risk
 - Increased fatigue loading
 - Increased maintenance costs

(Wirbel)

Dealing with Free Spans

- Rectification
 - **Grout bags**
 - Rock dumping
 - Jetting high spots

(Foundocean)

Dealing with Free Spans

- **MAMOG**
- Matrix Composites & Engineering
- (OCEANEERING)®

- Rectification
 - Grout bags
 - Rock dumping
 - Jetting high spots
- > VIV mitigation
 - Fairings
 - Strakes

(Trelleborg)

Dealing with Free Spans

- Rectification
 - **Grout bags**
 - Rock dumping
 - Jetting high spots
- VIV mitigation
 - **Fairings**
 - **Strakes**
 - Longitudinally Grooved Suppression (LGS)

What is LGS?

LGS Conception

What is LGS?

LGS Evolution

- Small scale (sub-critical R_E testing)
 - R_E: 3,000 to 16,000 (subcritical)
 - 80 geometries tested

LGS Testing

- **MAMOG**
- Matrix Composites & Engineering
 - OCEANEERING ®

- Large-scale testing
 - Optimal variant selected (R8 profile)
 - 1:3.8 scale test
 - Fixed and free-vibration tests
 - R_E up to 1,500,000 (critical R_E , post-critical R_E)

 $R_E = U D / v$

Re: Reynolds Number

U: flow speed

D: principal dimension (pipe diameter)

v: kinematic viscosity

Low Reynolds number testing

LGS Testing

Fixed (static) Drag Coefficients

LGS Testing

VIV Amplitude

$$U^* = U / f D$$

U: free stream velocity

f: frequency

D: hydrodynamic diameter

Application of LGS Data to Pipe Spans

Cross-flow response model

Application of LGS Data to Pipe Spans

In-Line response model

Application of LGS Data to Pipe Spans

Force-based Model

Comparison of Lift Curves:

Installation Challenges

- > High pipe diametrical tolerance
- > Low under-pipe clearance
- > Robustness
- > Low near-seabed visibility
- > Extended design life
- > ROV deployment challenges and timings

Challenges

AMOG

- > High pipe diametrical tolerance
 - Pipe insulation
 - Field joints
- > Low under-pipe clearance
- > Robustness
- > Low near-seabed visibility
- > Extended design life
- > ROV deployment challenges and tin

Challenges

- > High pipe diametrical tolerance
- > Low under-pipe clearance
 - Low profile of LGS
 - Low profile installation tooling
- > Robustness
- > Low near-seabed visibility
- > Extended design life
- > ROV deployment challenges and timings

Challenges

- High pipe diametrical tolerance
- Low under-pipe clearance
- Robustness
- Low near-seabed visibility
- Extended design life
- > ROV deployment challenges and timings

ROV Interface Design:

- Fail safe mode
- Spring loaded latches
- Optimised shrouds/frame

Challenges

- > High pipe diametrical tolerance
- > Low under-pipe clearance
- > Robustness
- > Low near-seabed visibility
- > Extended Design Life
 - LLDPE material field proven
 - Non-metallic parts
- > ROV deployment challenges and timings

Challenges

- > High pipe diametrical tolerance
- > Low under-pipe clearance
- > Robustness
- > Low near-seabed visibility
- > Extended design life
- > ROV deployment challenges and timings
 - SIT (Site Integration Testing)

AMUG

SIT

- Site Integration Testing (SIT) to test critical aspects of installation
 - Retrieval from deployment frame
 - Tool interfaces
 - Field joints
 - Installation orientation and methodology
 - Deployment frame optimisation
 - Strength testing
- > SIT identified fail safe modes:
 - Recovery features added to deployment frame
 - Fail open hydraulics

Field Installation [Video]

Detail design

Successful Field Installation

- > 455 shrouds installed in 21 days
- > Average installation time **13 minutes**
- > Fastest 6 ½ minutes

In Review

- > Pipeline free spans → reduced fatigue life of pipeline
- > LGS a viable VIV mitigation solution for pipeline free spans
 - Low profile
 - Robust
 - Increased free span coverage
- > ~85% reduction in design VIV amplitude
- Installation methodology is field-proven
- Retro-fit OR pre-deploy as contingency for free span growth

Thank You

Engineering solutions

Expertise. Innovation. Value.