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Overview II

• Investigated mechanical effects (buckle 

management) in previous 

presentations/papers

• Borrowed several slides…



Woodside and UWA run FutureLab OceanWorks, fostering applied research and education in offshore 

engineering

Prototyping fund:  

Small-scale research 

funds for fast, targeted 

research

(8 projects initiated in 

2018, including this 

one)
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• Sleepers
➢ Vertical OOS

➢ Low friction at buckle apex

➢ Medium critical buckling forces

➢ Large structure

➢ Spans on each side of BI

• Zero Radius Bends (ZRB)
➢ Vertical + Horizontal OOS

➢ Low friction at buckle apex

➢ Low critical buckling forces

➢ Large structure

➢ Spans on each side of BI

Engineered buckle initiators

http://www.pacind.com.au/projects/woodside-buckle-initiators/ http://civmec.com.au/project/prelude-floating-lng-project/
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Sinclair et al. 2009

Kristiansen et al. (2005)

Bruton & Carr (2010)

Engineered buckle initiators: Spans and touchdown zones (TDZ)
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Measured

Calculated



Effects of Sediment Mobility on Pipeline Embedment
As-laid survey

Same pipeline, further along

Under 

ambient 

metocean

conditions

3 years later

3 years later3 years later

Bransby et al. (2013)

Bransby et al. (2013)Bransby et al. (2013)

Bransby et al. (2013)

Bransby et al. (2013) - AOG



Pipe A, 2002, 6 months after laying, 

Pipe A, 2006, 4 years after laying 

Leckie et al. 2015 

200 m



ESTIMATION OF FLUID-PIPE-SOIL INTERACTION
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Effects of Sediment Mobility on Pipeline Embedment

Scour induced 

lowering

Scour induced 

lowering

Increased 

span

Increased 

span

• Pipe embedment in 

TDZ can increase with 

time

➢ Increase in seabed 

resistance

• Scoured trench may be 

formed at touchdown 

point 

➢ Increase in span 

length

➢ Relax pipeline lateral 

buckle

➢ Increase in VIV 

induced fatique

Scoured 

trench

Low et al. (2018)
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Methodology:

• Experimental testing at small-scale

• Analytical calculations

• (Increasing amount of NWS field evidence exists - not covered here)

Span length (NTS)

Time after installation
Start-up

Tolerable 

span length Uncertainty?

Aim of (pilot) research

To look at how the span length changes with time after installation

Constructed 

span length

Uncertainty?



Span length

Time after installationStart-up

Tolerable 

span length Reduced uncertainty

Constructed 

span length Do nothing 

(IMR)



Span length

Time after installationStart-up

Tolerable 

span length

Reduced uncertainty

Constructed 

span length
Change design;

Planned mitigation



https://www.geoinformatienederland.nl/system/files/documents/607-

151014%20Allseas%20presentation%20HSBB%202015.pdf

Avoids spans 

(and VIV risk)
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Flume length = 15 m (flow from right to left)

Flume width = 0.4 m

Initial tests will have flow axial to pipeline

Pipeline diameter 40 mm

Pipeline length 12 m (300 D)

Solid Acetal bar (SG = 1.41; E = 2.76 GPa)

Shuchen Li         Weidong Yao Hongwei An



Fixed height, 

q = 0
TDZ

Span



Point measurement

Laser scanner across sample
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Test 1: Dry sand – manual excavation to 1 D

Rail height, h = 4 d 

(= 160 mm)

Diameter, d = 40 mm;

W = 17.3 N/m

EI = 0.35 kNm2

Loose, dry sand

q = 0

TDZ

Initial span length  3000 mm

Pipeline

Air

h=WL4/24EI

Get L = 2.96 m

Initial geometry



Test 1: Dry sand – manual excavation to 1 D

Rail height, h = 4 d 

(= 160 mm)

Diameter, d = 40 mm;

W = 17.3 N/m

EI = 0.35 kNm2

Loose, dry sand

q = 0

TDZ

Initial span length  3000 mm

Pipeline

Air

Initial geometry

s → D

40 mm



Test 1: Dry sand – manual excavation to 1 D

Height, h = 4 d 

(= 160 mm)

Loose, dry sand

q = 0Pipeline

Excavation 

(remove 40 mm 

below pipeline)

No touch-down

Interim geometry

Span shoulder at 

end of excavation



Test 1: Dry sand – manual excavation to 1 D

Height, h = 4 d 

(= 160 mm)

Loose, dry sand

q = 0Pipeline

Excavation 

(remove 40 mm 

below pipeline)

No touch-down

Interim geometry

Maximum span length = 4.895 m

Span shoulder at 

end of

Span shoulder at 

end of excavation



Test 1: Dry sand – manual excavation to 1 D

Height, h = 4 d 

(= 160 mm)

Loose, dry sand

q = 0

Touchdown

Final span length  3 m

Pipeline

Excavation 

Air

Test stopped

fn (vertical)  4.4 Hz;  fn (horizontal)  3.4 Hz

Equilibrium main-span geometry

h=WL4/24EI

Get L = 2.96 m for s = 0

L = 3.13 m (s = d)

5.7% increase in L



Fixed height, 

q = 0
TDZ

Span



Test 1: Dry sand – manual excavation to 1 D

Height, h = 4 d 

(= 160 mm)

q = 0

TDZ
Span length  3 m

Pipeline

Excavation 

Air

Not done in experiment

Possible final geometry

NO further change to main span length



Test 1: Dry sand – manual excavation to 1 D

160 mm

Loose, dry sand

q = 0

Critical span length  5 m

Pipeline

Excavation length

Air

Summary of results
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Test 1: Dry sand – manual excavation to 1 D

Summary of results
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Calculated span geometry (just when 

pile touches down on excavated 

surface) 

 5 m

Test results

Simple structural Analysis

→ Maximum span length (and final span length) looks predictable



Test 2: Submerged – manual excavation to 1 D

Height, h = 4 d 

(= 160 mm)

Diameter, d = 40 mm;

W = 5.05 N/m

EI = 0.35 kNm2

Loose sand

q = 0

TDZ

Initial span length = 4.43 m

Pipeline

Water

h=WL4/24EI

Get L = 4.26 m for s = 0

L = 4.46 m (s = d)

4.6% increase in L

Initial geometry

W’ reduced because of buoyancy



Results (test 1 & 2)

Same process for lighter pipe (but longer spans)
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Final post-excavation pipeline profiles

In water (W’= 5 N/m)

In air 

(W’= 17 N/m)

Distance away from buckle initiator rail (mm)

Dashed lines = measurements

Solid lines = calculated profile

→ Initial, interim and final span configuration can be approximated simply



Scour tests ongoing

• Initial results limited by flow orientation (and ripples). 

• Plans for tests in wider flumes to change pipeline orientation.

Test 1

Test 2



o BI span elongation due to scour is a real design issue which must be addressed (significant mitigation 

costs incurred on recent projects)

o Field evidence being generated on recently installed projects on the NWS

o Preliminary experiments look encouraging. Suggest that significant span elongations can occur (and their 

maximum magnitude is likely to be predictable), but that they are likely to be transient.

o Span management / design is likely to involve uncertainty about rate of scour growth at the TDZ 

compared to fatigue budgets and inspection frequency.  

o Span elongation rates may be predictable with knowledge of :

• Metocean conditions (compared to pipeline heading) 

• Seabed erosion resistance

• Pipeline, BI and seabed properties

o Initial pilot experimental work suggests that it may be possible to investigate span elongation in flumes, 

with careful scaling of field conditions.

5. Conclusions
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