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management) in previous
presentations/papers
- Borrowed several slides... Pipe-Soil Interaction at Engineered
Lateral Buckle Touchdown Zones
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Part of the Woodside FutureLab Network

Woodside and UWA run FutureLab OceanWorks, fostering applied research and education in offshore

engineering

OUTREACH & TEACHING

IDEAS
+ Workshops (Start something,
. unconscious hias, research
UWA Dce_antﬂurks Space communication)
WEL—P| - Pitching Sessions L P . Future engineers program with women
Consultants/ ; = Away Days in subsea engineering
oo | - feie . Women in IOMRG network
. Researc ; = Women in ne
Collaborators e Ject - Perth Science festhval
+  Academic mentoring scheme for
women
« Community mediafengagement ¥
INCUBATION
RiverLab: Work with MPE students to use the Swan River as a Giant Wave Basin .
e.g. Mooring line integrity, demonstration of offshore concepts
Prototyping Fund: Small scale research funds for fast, targeted research Y. v
Up to~ 35k to progress an idea — 8 initiated in 2018
OUTCOMES/
: IMPACT
Large scale research projects: ARC + CRC scale v
e.g. Offishore Floating Facilities Hub, ARC Linkage projects ¢
Commercialisation: Supported by RDland Innovation Quarter v
Three projects cumently on pathway to commercialisation o
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woodside

Prototyping fund:
Small-scale research
funds for fast, targeted
research
(8 projects initiated in
2018, including this
one)
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The Fugro Chair in Geotechnics supports Professor Fraser Bransby and 2 PhD students at UWA,
conducting innovative research relevant to industry needs
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Engineered buckle initiators X\{E%Em

» Sleepers
» Vertical OOS
» Low friction at buckle apex
» Medium critical buckling forces

» Large structure
» Spans on each side of Bl

http://www.pacind.com.au/projects/woodside-buckle-initiators/

glgrtgon « Zero R_adius Be_nds (ZRB)
Ichthys » Vertical + Horizontal OOS
Wheatstone » Low friction at buckle apex
Prelude > Low critical buckling forces
Julimar

GWF-2 » Large structure

GED » Spans on each side of Bl
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B Bruton & Carr (2010) [
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Engineered buckle initiators: Spans and touchdown zones (TDZ) ™ WESTERN

Bruton & Carr (2010)

AUSTRALIA

Kristiansen et al. (2005)

Sleepers for lateral buckling mitigation
(buckle on vertical sleepers)

< 'Slincia,ir;et al, 2009

Ve
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Effects of Sediment Mobility on Pipeline Embedmé&nt
As-laid survey Under 3 years later
b, ambient
metocean
conditions
—
B ransby et al. (2013) Branshy et al. (2013)
Same pipeline, further along 3 years later
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Bransby et al. (2013) Bransby et al. (2013)
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Leckie etal. 2015 V@ WESTERN AR

Pipe A, 2002, 6 months after laying,

200 m

Pipe A, 2006, 4 years after laying
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ESTIMATION OF FLUID-PIPE-SOIL INTERACTION

Kilometre point, KP
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Effects of Sediment Mobility on Pipeline Embedment
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Touchdown <« Spanning Pipeline — Touchdown
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* Pipe embedment in

TDZ can increase with

time

> Increase in seabed
resistance

« Scoured trench may be
formed at touchdown
point

» Increase in span
length

» Relax pipeline lateral
buckle

> Increase in VIV
Induced fatique
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Effects of Sediment Mobility on Pipeline Embedment

o
o))

Touchdown <« Spanning Pipeline — Touchdown
Zone Zone
0.4
0.2
Increased Y Increased
¥/
span, 4 v SPaANe, field' Seabed Level

Pipe Invert Level Relative to Far Field Seabed (m)
o

o
N

O
~

o
o

1 Scour induced

lowering

|
—(O—

Scour induced
lowering

Scoured
trench

T

~O)— —()—

THE UNIVERSITY OF

M WESTERN
%az? AUSTRALIA

* Pipe embedment in

TDZ can increase with

time

> Increase in seabed
resistance

 Scoured trench may be
formed at touchdown

point
> Increase in span
length

» Relax pipeline lateral
buckle

> Increase in VIV
Induced fatique



Aim of (pilot) research o | | e e o
To look at how the span length changes with time after installation  %==# AUSTRALIA

-

Span length (NTS) _--~ Uncertainty?

A 7

Tolerable

span length —j> Uncertainty?

Constructed /
span length

\
Start-up

»

Time after installation

Methodology:

« Experimental testing at small-scale

« Analytical calculations

* (Increasing amount of NWS field evidence exists - not covered here)
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Span length

A

Tolerable | _ _ _ _ _ _ _ _ _ __ __ o ___
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Constructed %

span length Do nothing
(IMR)

»

Start-up Time after installation
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Span length
> Reduced uncertainty
Tolerable |- (m———eme—m—m—/— — _ _  _ _ ___
span length
Constructed % Change design;
span length Planned mitigation

Start-up Time after installation



https://www.geoinformatienederland.nl/system/files/documents/607-
151014%20Allseas%20presentation%20HSBB%202015.pdf

Buckle initiators

Figure 7: Example of a buckle initiator at KP 5.677
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Avoids spans
(and VIV risk)
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Shuchen Li Weidong Yao Hongwei An

I[l
L

Flume length = 15 m (flow from right to left) Pipeline diameter 40 mm
Flume width = 0.4 m Pipeline length 12 m (300 D)
Initial tests will have flow axial to pipeline Solid Acetal bar (SG =1.41; E = 2.76 GPa)
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FiXed height,
0=0
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Laser scanner across sample

Point measurement
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Test 1: Dry sand — manual excavationto 1 D € AUSTRALIA
Initial geometry
Diameter, d = 40 mm,;
W' = 17.3 N/m
El = 0.35 KNm2 Pipeline y 0=0
Air Rail height, h=4d
TDZ =[160 mm)

A\

‘ Loose, dry sand < >

Initial span length ~ 3000 mm

h=W'L4/24EI

GetL=2.96m



Test 1: Dry sand — manual excavationto 1 D

Initial geometry

Diameter, d = 40 mm:;

W' =17.3 N/m o
El = 0.35 kNm? Pipeline
TDZ

Initial span length ~ 3000 mm
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Test 1. Dry sand — manual excavationto 1 D &5 AUSTRALIA

Interim geometry

06=0

Height, h=4d
(= 160 mm)

Pipeline

No touch-down

‘Loose, dry sand / \ " /
/ Y

A\

Excavation
(remove 40 mm

Span shoulder at below pipeling)

end of excavation
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Test 1. Dry sand — manual excavationto 1 D &5 AUSTRALIA

Interim geometry

06=0

Height, h=4d
(= 160 mm)

Pipeline

Maximum span length = 4.895 m

No touch-down

‘ Loose, dry sand / \ . /
/ |

A\

Excavation
(remove 40 mm

Span shoulder at below pipeline)

end of excavation
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Test 1. Dry sand — manual excavation to 1 D g@g WESTERN

Equilibrium main-span geometry

Test stopped

Pipeline 0=0

Height, h=4d
(= 160 mm)

Air
Touchdown

A\

Final span length ~ 3 m

Loose, dry sand:

Y
Excavation

h=W'L4/24EI

GetL=2.96 mfors=0
L=3.13m(s=d) f, (vertical) = 4.4 Hz; f (horizontal) ~ 3.4 Hz

5.7% increase in L
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Test 1: Dry sand — manual excavationto 1 D i@ X\L’JES%EEEﬁ

Possible final geometry

Not done in experiment

NO further change to main span length

06=0

Height, h=4d
(= 160 mm)

Pipeline

Air

Span length = 3 m

A\

Excavation
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Test 1: Dry sand — manual excavation to 1 D &3 N <inaiia

Summary of results

6 Span growth with
elongating scour hole _— Ciritical (interim) span length

5 /
Ey
=
o1} .
£ 3 Final span only
= o 0
5, Initial 5% longer
' span
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0 0.5 1 15 2 o _
Excavation length (beyond original touch-down point (m) Plpe“ne \ 6=0
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Excavation length
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Test 1. Dry sand — manual excavation to 1 D g@g WESTERN

Summary of results

Test results

Simple structural Analysis

0.2

Calculated span geometry (just when
pile touches down on excavated
surface)

0.15

0.1

0.5 1 1.5 2

Excavation length (beyond original touch-down point (m) 0.05

-0.05

- Maximum span length (and final span length) looks predictable !
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Test 2: Submerged — manual excavation to 1 D & ANETRATIA
Initial geometry
W’ reduced because of buoyancy
Diameter, d = 40 mm;
W’ =5.05 N/m
Pipeline 0=0

El = 0.35 KNm?

Height, h=4d
(= 160 mm)

L oose sand < >

Initial span length = 4.43 m
h=W'L4/24E|

GetL=426mfors=0
L=4.46 m (s=d)
4.6% increase in L
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In water (W’= 5 N/m) Same process for lighter pipe (but longer spans)

5
4
3 .
2 In air (W= 17 N/m) Final pipeline profiles
1 300
0 :
0 0.5 1 1.5 250
Excavation length (beyond original touch-down point (m) B
— 200k
E | =~
g - NN
N O1S0F T 0
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B AN
100 - RN
N \ ~N
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50 : -
L (W=17Nm) ~ '~ e
O B 1 1 1 1 |\ ~ - ﬂi.}—/--T-—-T-_-I 1 1 1 1
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Final post-excavation pipeline profiles
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Dashed lines = measurements
Solid lines = calculated profile
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In air
(W= 17 N/m)

d i 1 l

0 1000 2000 3000 4000 5000 6000 7000 8000

ll1lllll1r

Distance away from buckle initiator rail (mm)

= Initial, interim and final span configuration can be approximated simply
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Scour tests ongoing

&5 AUSTRALIA

120
X [mm]

 Initial results limited by flow orientation (and ripples).
« Plans for tests in wider flumes to change pipeline orientation.




5. Conclusions WESTERN

AUSTRALIA

Bl span elongation due to scour is a real design issue which must be addressed (significant mitigation
costs incurred on recent projects)

Field evidence being generated on recently installed projects on the NWS

Preliminary experiments look encouraging. Suggest that significant span elongations can occur (and their
maximum maghnitude is likely to be predictable), but that they are likely to be transient.

Span management / design is likely to involve uncertainty about rate of scour growth at the TDZ
compared to fatigue budgets and inspection frequency.

Span elongation rates may be predictable with knowledge of :
* Metocean conditions (compared to pipeline heading)
« Seabed erosion resistance
« Pipeline, Bl and seabed properties

Initial pilot experimental work suggests that it may be possible to investigate span elongation in flumes,
with careful scaling of field conditions.
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