

Scott Draper, Weidong Yao, Liang Cheng, Phil Watson

Meysam Banimahd

Antonio Borges Rodriguez

AOG Conference 2019

15th March, 2019

Whitehouse et al. 2011

Initial Seabed Level

50 mm

Scoured bed

How do we improve on this ...

- 1. Increase the parameter space spanned by experiments
- 2. Use structure-specific best-practice method

How do we improve on this ...

- 1. Increase the parameter space spanned by experiments
- 2. Use structure-specific best-practice method

Yao et al. (2018, 2019 *a,b*)

How do we improve on this ...

- Increase the parameter space spanned by experiments
- 2. Use structure-specific 'best-practice' method FOCUS OF TODAYS TALK!

Best Practice Scour Predictions vs. Scour Survey Data of a Subsea Structure

Field observations and data

Laboratory experiments

Laboratory-based estimates of scour

Comparison to field observations

Two 'identical' structures

ROV survey data

Scour surveys

- 4.5 months
- 17.5 months

ROV survey data

Scour surveys

- 4.5 months
- 17.5 months

ROV survey data

Scour surveys

- 4.5 months
- 17.5 months

Site specific sediment properties

Core sample located <100 m from structures

Site specific metocean conditions

Field observations and data

Laboratory experiments

Laboratory-based estimates of scour

Comparison to field observations

Experiments

- 1. Experiments to assess shear stress amplification factor
- 2. Experiments to simulate shallow' scour

Amplification factors

Amplification factors

Shallow scour experiments

Field observations and data

Laboratory experiments

Laboratory-based estimates of scour

Comparison to field observations

Laboratory-based estimates of scour

(i) Account for time varying currents

$$S(t) = \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt = \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \frac{dS}{dt} dt$$

$$= \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

$$= \int_0^t \xi[\tau(t, \tau_{cr})] dt$$

(ii) Scale results to field conditions

Field observations and data

Laboratory experiments

Laboratory-based estimates of scour

Comparison to field observations

Scour calculations

17.5 month survey

WESTERN AUSTRALIA

Conclusions

Field data is invaluable for better understanding scour and reducing uncertainty in predictive methods

Reasonable agreement is obtained using laboratory-based scour estimates if site specific soil and metocean conditions are considered together with specific geometry of structure

3D printing and appropriate scaling arguments can make bespoke laboratorybased estimates practical in design

The mudmat does provide inherent scour protection – reduced amplification factor and reduced scour rate (more systematic study on this aspect is under peer review)

Scott Draper, Weidong Yao, Liang Cheng, Phil Watson

Meysam Banimahd

Antonio Borges Rodriguez

AOG Conference 2019

15th March, 2019