Hydrate and Wax Plug: Prevention and remediation using active heating technology

Cyril Holyst
Anthony Musto
Agenda

1. Overview & challenges
2. ETH flexible pipe technologies
3. ETH rigid pipe technologies
4. Performance summary
5. Key takeaways
6. Q&A
Overview & challenges
Overview & challenges

Deepwater / long tie back challenges:

Flow assurance challenges:

Viscous oil
Wax
Hydrate
Active heating technologies – Benefits

Main benefits of Electrically Trace Heated (ETH) by Joule effect:

- Cost effective alternative to chemical injection (hydrate mitigation)
- Wax and Hydrate prevention & remediation (control of heating power and live monitoring)
- Accelerate start-up operations after a shutdown
- To enhance flow rates by increasing fluid temperature for viscous oil, long tie-back or deep water development (continuous heating)

Active heating by ETH technologies provides the most adapted solution for demanding applications
ETH track records

- 1st Flexible Pipe: Conoco Udang (1970)
- ETH-PIP: Early Qualification Work (1990)
- 1st ETH-SP: Conoco Udang (2000)
- 1st ETH-IPB: Dalia (2010)
- ETH-IPB: Papa Terra (2010)
- ETH-HCRAW: Alta Gohta (2020)
- 1st ETH-PIP: Neptune Energy Fenja (2020)

TechnipFMC
ETH flexible pipe technologies
Integrated Production Bundle – System description

IPB: Integrated Production Bundle
- Flexible pipe production core structure
- Bundle assembly
- Thermal insulation

IPB key capabilities
- Multiple functions available combined within single bundle design (ETH, GI, GL, WI, OF etc.)
- Temperature monitoring
- High electrical efficiency
- Wet insulation (~U value = 3–6W/m2K)
- Internal diameter capabilities: 2–12”
ETH-HCRAW technology – System overview

HCRAW = Heating Cables Replacing Armour Wires

- Cost effective, simple design
- No bundle (weight and OD reduction compared to ETH-IPB)
- Embedded electrical cables, high heating efficiency
- Tailor made design: design number of cables selected for each application

Design & number of cables adapted to each specific project requirements
ETH-HCRAW technology – Temperature monitoring

Distributed Optical Fibre Temperature System (DTS)

- Deep understanding of the temperature variations along and within the flexible pipe & detection of any water presence in annulus
- Can be combined with topside interface system (warm up / maintain modes)
- Field proven technology

Typical ETH - Flexible temperature profile
ETH rigid pipe technologies
Pipe-in-pipe – Extensive track record

ETH-PiP = Using reeled PiP track record to develop a new technical solution
ETH-PiP – System description and functions

Standard Pipe-in-Pipe (PiP)

- Trace heating used in other industrial applications
- Exposed to harsher conditions
- Reeled Pipe-in-Pipe Offshore track record
- Manufacturing in standard adapted spoolbase

The ETH-PiP is the combination of qualified components for dry environment
ETH-PiP – Active heating rigid pipe technologies

- Low U-Value (0.6 to 2 W/m².K)
 - Reducing power requirement during keep warm mode
 - Allows longer cool down and no touch duration
- Simplify operating procedure and subsea architecture
- Reduce chemical injection volumes (MEG)
- High redundancy,
- Temperature monitoring (DTS) allowing
 - Wax / plug management via continuous monitoring
 - Hydrate plug melting operations
- Field proven technology

ETH-PiP provide the full range of functionalities for hydrate management
ETH-PiP – Qualification and track record

Early qualification work (1999 to 2004, extended to 2010)

- Full scale tests on 12m joints, including all electrical circuits and mechanical parts
 - Confirmation of the high level of heating efficiency (heating curves)
 - CFD model calibration
 - Confirmation of reel-ability

Extended qualification (2009-10)

- Re-assessment of technical readiness with a project study case with TOTAL TEQP programme (Technology Evaluation & Qualification Process)
 - Confirmation of the high redundancy and operation under degraded mode
 - Ageing long term at 120°C, higher specification on trace heating cable
 - CFD, lab test and mechanical testing
ETH-PiP – Track record

ETH-PiP – First project application
Total Islay, 2011

- 122m WD with challenging bathymetry
- 6 km single well tie-back
- 6.625” x 12.75” ETH-PiP line
- U value (20°C) = 0.9 W/m2.K
- High Temperature (120 °C)
ETH-PiP – Track record

ETH-PiP – Neptune Energy Fenja
- Ongoing pipe manufacturing
- 324m WD
- Longest and largest ETH-PiP
- 36 km single well tie-back
- 12” x 18” Production ETH-PiP
- Continuous heating

- ETH-PiP selected vs
 - chemical injection option
 - heated dual flowline and riser

Significant CAPEX reduction
TechnipFMC active heating rigid pipe technologies

ETH-SP & ETH-PiP Reel-Laying (based on DEEP BLUE capabilities - flooded pipe)

Deepwater in-field lines

NOT INSTALLABLE (top tension)

Wet Insulated single pipeline

Reel-lay PiP or ETH-PiP

Data PiP

PIP OD limitation

Large OD tie-backs

Beyond current net capacity

Missing efficient product for deepwater and large OD tie-back field development
TechnipFMC active heating rigid pipe technologies

Development of Wet Insulated ETH Single Pipe

This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.
TechnipFMC active heating rigid pipe technologies

ETH-SP (Single Pipe)

- Solution in development
- Designed for both continuous and intermittent heating
- Wet insulated pipeline, for project where U-value is not driving
- Unlock deeper water installation with moderate top tensions
- Compact solution giving access to longer tie-back
- High redundancy
- Temperature Monitoring (DTS) with similar benefits than the ETH-PiP

ETH-SP complementary of the ETH-PiP

This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.
Performance summary
Active heating pipe technologies – Performances

<table>
<thead>
<tr>
<th></th>
<th>ETH-HCRAW</th>
<th>ETH-IPB</th>
<th>ETH-PiP</th>
<th>ETH-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Flexible Pipe</td>
<td>Flexible Pipe</td>
<td>Pipe-in-Pipe</td>
<td>Wet Insulated</td>
</tr>
<tr>
<td>U-Value / OHTC (W/m².K)</td>
<td>3 to 6</td>
<td>3 to 6</td>
<td>0.6 to 2</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Power requirement (base ETH-PIP)</td>
<td>x 2</td>
<td>x 3</td>
<td>x 1 (reference)</td>
<td>x 5/6 (estimation)</td>
</tr>
<tr>
<td>Maximum diameter (inner pipe)</td>
<td>2” to 20” ID</td>
<td>2” to 12” ID</td>
<td>Up to 12” ID (dependent on vessel capabilities)</td>
<td>Up to 16” OD (dependent on vessel capabilities)</td>
</tr>
<tr>
<td>Heated length (in one go, size dependant)</td>
<td>up to 12km</td>
<td>up to 12km</td>
<td>up to 50km</td>
<td>Up to 75km (estimation)</td>
</tr>
<tr>
<td>Maturity</td>
<td>3 projects</td>
<td>2 projects</td>
<td>1 project + 1 on-going</td>
<td>Under development</td>
</tr>
</tbody>
</table>

This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.
Key takeaways
Key takeaways

- ETH-Technology is a versatile, and cost effective solution for hydrate and wax plug management
- Field proven technology with more than 45km of ETH Pipes successfully delivered to date (80km by end 2020)
- Integrated solution part of a Subsea 2.0 technologies portfolio
- Early engagement
- DTS part of iLoF products for complete field condition performance monitoring solution
Cyril Holyst
Study Manager | Front End & System Engineering, Asia Pacific
P +61 8 9463 2838
E cyril.holyst@technipfmc.com

Anthony Musto
Study Manager | Front End & System Engineering, Asia Pacific
P +603 2116 7624
E anthony.musto@technipfmc.com
Questions
ETH-HCRAW technology – End fitting

- **End Fitting**

Integration of connector will slightly increase external size of EF
Active heating pipe technologies – Performances

<table>
<thead>
<tr>
<th>ETH-HCRAW</th>
<th>ETH-IPB</th>
<th>ETH-PiP</th>
<th>ETH-SP</th>
<th>WET-DEH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction</th>
<th>Flexible Pipe</th>
<th>Flexible Pipe</th>
<th>Pipe-in-Pipe</th>
<th>Wet Insulated</th>
<th>Wet Insulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Value / OHTC (W/m².K)</td>
<td>3 to 6</td>
<td>3 to 6</td>
<td>0.6 to 2</td>
<td>3 to 6</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Power requirement (base ETH-PIP)</td>
<td>x 2</td>
<td>x 3</td>
<td>x 1 (reference)</td>
<td>x 3</td>
<td>x 10</td>
</tr>
<tr>
<td>Maximum diameter (inner pipe)</td>
<td>2” to 20” ID</td>
<td>2” to 12” ID</td>
<td>Up to 12” ID (dependent on vessel capabilities)</td>
<td>Up to 16” OD (dependent on vessel capabilities)</td>
<td>Up to 18” OD (dependent on vessel capabilities)</td>
</tr>
<tr>
<td>Heated length (in one go, size dependant)</td>
<td>up to 12km</td>
<td>up to 12km</td>
<td>up to 75km</td>
<td>Up to 75km</td>
<td>Up to 43km</td>
</tr>
<tr>
<td>Maturity</td>
<td>3 projects</td>
<td>2 projects</td>
<td>1 project + 1 on-going</td>
<td>Under development</td>
<td>Under development</td>
</tr>
</tbody>
</table>

This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.