

Microgrid

Presenter: Victor Dunand

- 1. Key driver for microgrids?
- 2. What is a microgrid?
- 3. Frequently asked questions answered
 - Impact of DER on Electrical network
 - Control strategy
- 4. 3 Case studies
- 5. Summary

- Reliability

3

What is a microgrid?

Presenter: Victor Dunand

Definition microgrid

A **microgrid** is a local electrical distribution system with **Distributed Energy Resources** operated in a coordinated way so to provide one or more of the following capabilities:

- to manage the site Energy consumption and Demand Peak shaving | Shifting | etc.
- to provide services to the grid and to the market

Demand response | Ancillary services | etc.

to increase resiliency

Islanded operation | increase back-up generation availability | etc.

• to integrate cost-effective energy sources

Grid code compliance | Export control | Self-consumption

5

Distributed Energy Resources

Distributed energy resources (DERs) are **electricity-producing resources** or **controllable loads** that are directly connected to a local distribution system.

DERs can include:

- solar panels
- wind turbine
- combined heat and power plants
- electricity storage
- generating set
- electric vehicles
- controllable loads: HVAC, industrial processes, etc.

Source: http://www.ieso.ca/

6

Three types of microgrid

On-site renewables, energy storage and power generation facilities utilized in parallel with grid Microgrid will generate energy from local sources in the case of a grid outage OR other external event which makes local energy more desirable Microgrid will generate energy from local source

The Institution of Engineering and Technology

Microgrid Architecture

Cloud services

- Energy Management
- Advanced Algorithm
- Global data collection
- Connection with 3rd parties

Supervision, HMI & Data Management

The Institution of

Engineering and Technology

- · Data acquisition
- · Alarming, Trending and reporting
- Remote and local interfaces

Microgrid Control

- Real time edge control
- Power Management
- Grid-connection management

Electrical Infrastructure

- Protection schemes
- Power Quality & Metering
- Switchgear and transformer

Distributed Energy Resources

- Electricity generating sources
- Flexible loads

8

Something 'New'

Solar PV and Battery Energy Storage System

Presenter: Victor Dunand

9

Solar PV Inverter

A solar inverter or PV inverter, is a type of electrical converter which converts the variable **direct current** (DC) output of a photovoltaic (PV) solar panel into a utility frequency **alternating current** (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

Battery Energy Storage Inverter

Inverters in Battery Energy Storage Inverter are electrical converter which allows the bi-direction conversion of electricity from/to direct current(DC) from/to alternative current(AC) so to charge or discharge the batteries into a commercial electrical grid or used by a local, off-grid electrical network.

Hybrid inverter

Hybrid inverters allow the connection on the direct current (DC) side of solar panels and batteries so that the battery can be charge directly from the solar panels.

More on inverters

	Grid-tied 'Stiff' inverter	Grid-forming inverter	Virtual Synchronous Generator
Grid-connection	Yes	Yes	Yes
V and f reference	-	Yes	Yes
Parallel operation with other generating units	-	-	Yes

¹³ **Presenter: Victor Dunand**

Frequently Asked Questions Answered

¹⁴ **Presenter: Victor Dunand**

Earthing regime

Grid-tied

-Grid provide Earth reference

- -Earth Faults are 'captured'
- Protection system can detect residual current

Earthing regime

Islanded Genset back-up

- -Earth reference provided through the generator earthing resistor
- -Earth Faults are 'captured'
- Protection system can detect residual current

Source: Cahier technique no. 158 – Calculation of short-circuit currents – Schneider Electric

16

Earthing regime

Islanded BESS

- -Earth reference provided through the earthing transformer
- -Earth Faults are 'captured'
- Protection system can detect residual current

1.1 ln < lf < 2.8ln

Control strategy

¹⁸ **Presenter: Victor Dunand**

What does this tell us?

- Need to predict and forecast the future.
- Need to use cost effective generation.
- Need to optimise the use of DER.
- Need to be able to access the potential remaining value.

Classic control

Assumptions

- Car drive at a constant speed.
- Cyclist is subject to gravity.
- Cyclist cannot overtake the car.
- Terrain between start and finish is known.

Constraints

- Cyclist want to maintain a safe distance with the car.
- Cyclist does not want to stop.
- Bicycle freewheels above a certain hub speed.

What can be done differently?

Objectives:

- Minimum amount of effort
- Reduce the travel time

Predictive control

Brake to save the potential energy

Predictive control The Institution of Engineering and Technology 60 ð Sweat to come up the hill

Predictive control

Model + Predictions + Objectives

Electricity cost X Generation forecast X Load forecast := $O_{\text{ptimised control}}$

Objectives can be:

- Reduce site demand
- Optimise energy usage to lower energy cost

Constraints

- Site operational constraint.
- Equipment operational constraint.

Benefit of MPC

- Anticipate future: forecasts
- Explicit handling of constraints
- Adapted for multi-variable control applications
- Adapts to changing context
- Increased value of ~10-20% over expert rules

Case study

³² **Presenter: Victor Dunand**

Woodside Goodwyn A platform

Installation of a 1MWh Lion BESS to provide spinning reserve allowing to run with one less gas turbine

Benefits:

- Reduced fuel consumption
- Back-up power supply
- Reduced carbon emissions

Santos Cooper bassin

Installation of solar PV + Battery Energy Storage System to power the beam pump replacing existing diesel generator.

Benefits:

- Reduced cost of operation
- 100% renewable power

Onslow Microgrid

Hybrid microgrid with gas turbine, solar PV and Battery Energy Storage System to supply the township of Onslow.

Benefits:

- Reduce carbon emission
- Lower electricity cost
- Increased supply reliability

Summary

Where next?

