

Microgrid

Presenter: Victor Dunand

Agenda

- 1. Key driver for microgrids?
- 2. What is a microgrid?
- 3. Frequently asked questions answered
 - Impact of DER on Electrical network
 - Control strategy
- 4. 3 Case studies
- 5. Summary

Key drivers

Cost

Sustainability

Reliability

What is a microgrid?

Definition microgrid

A microgrid is a local electrical distribution system with **Distributed Energy Resources** operated in a coordinated way so to provide one or more of the following capabilities:

- to manage the site Energy consumption and Demand
 Peak shaving | Shifting | etc.
- to provide services to the grid and to the market

 Demand response | Ancillary services | etc.
- to increase resiliency

 Islanded operation | increase back-up generation availability | etc.
- to integrate cost-effective energy sources

 Grid code compliance | Export control | Self-consumption

Distributed Energy Resources

Distributed energy resources (DERs) are **electricity-producing resources** or **controllable loads** that are directly connected to a local distribution system.

DERs can include:

- solar panels
- wind turbine
- combined heat and power plants
- electricity storage
- generating set
- electric vehicles
- controllable loads: HVAC, industrial processes, etc.

Source: http://www.ieso.ca/

Three types of microgrid

On-site renewables, energy storage and power generation facilities utilized in parallel with grid

Microgrid will generate energy from local sources in the case of a grid outage OR other external event which makes local energy more desirable Microgrid will generate energy from local source

Grid-tied

Island-able

Off-grid

Microgrid Architecture

Cloud services

- Energy Management
- Advanced Algorithm
- Global data collection
- Connection with 3rd parties

Supervision, HMI & Data Management

- · Data acquisition
- · Alarming, Trending and reporting
- Remote and local interfaces

Microgrid Control

- Real time edge control
- Power Management
- Grid-connection management

Electrical Infrastructure

- · Protection schemes
- · Power Quality & Metering
- · Switchgear and transformer

Distributed Energy Resources

- · Electricity generating sources
- Flexible loads

Something 'New'

Solar PV and Battery Energy Storage System

Solar PV Inverter

A solar inverter or PV inverter, is a type of electrical converter which converts the variable **direct current** (DC) output of a photovoltaic (PV) solar panel into a utility frequency **alternating current** (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

Inverters in Battery Energy Storage Inverter are electrical converter which allows the bi-direction conversion of electricity from/to direct current(DC) from/to alternative current(AC) so to charge or discharge the batteries into a commercial electrical grid or used by a local, off-grid electrical network.

Hybrid inverter

Hybrid inverters allow the connection on the direct current (DC) side of solar panels and batteries so that the battery can be charge directly from the solar panels.

More on inverters

	Grid-tied 'Stiff' inverter	Grid-forming inverter	Virtual Synchronous Generator
Grid-connection	Yes	Yes	Yes
V and f reference	-	Yes	Yes
Parallel operation with other generating units	-	-	Yes

Frequently Asked Questions Answered

Earthing regime

Grid-tied

- -Grid provide Earth reference
- -Earth Faults are 'captured'
- Protection system can detect residual current

Earthing regime

Islanded Genset back-up

- -Earth reference provided through the generator earthing resistor
- Earth Faults are 'captured'
- -Protection system can detect residual current

Fig. 10: Total short-circuit current isc (e), and contribution of its components.

Earthing regime

Islanded BESS

- Earth reference provided through the earthing transformer
- -Earth Faults are 'captured'
- Protection system can detect residual current

1.1 In < If < 2.8 In

Control strategy

Problem

$$C_{\text{ost}} = E_{\text{lectricity consumption}} \times P_{\text{rice}} - R_{\text{evenue}}$$

$$C = E(load, DER) \times P(demand, location, time) - R(time)$$

$$f(time, weather)$$

$$f(time)$$

What does this tell us?

- Need to predict and forecast the future.
- Need to use cost effective generation.
- Need to optimise the use of DER.
- Need to be able to access the potential remaining value.

Assumptions

- Car drive at a constant speed.
- Cyclist is subject to gravity.
- Cyclist cannot overtake the car.
- Terrain between start and finish is known.

Constraints

- Cyclist want to maintain a safe distance with the car.
- Cyclist does not want to stop.
- Bicycle freewheels above a certain hub speed.

What can be done differently?

Objectives:

- Minimum amount of effort
- Reduce the travel time

Brake to save the potential energy

Solution

Model + Predictions + Objectives

Electricity cost X Generation forecast X Load forecast := Optimised control

Objectives can be:

- Reduce site demand
- Optimise energy usage to lower energy cost

Constraints

- Site operational constraint.
- Equipment operational constraint.

Benefit of MPC

- Anticipate future: forecasts
- Explicit handling of constraints
- Adapted for multi-variable control applications
- Adapts to changing context
- Increased value of ~10-20% over expert rules

Case study

Woodside Goodwyn A platform

Installation of a 1MWh Lion BESS to provide spinning reserve allowing to run with one less gas turbine

Benefits:

- Reduced fuel consumption
- Back-up power supply
- Reduced carbon emissions

Santos Cooper bassin

Installation of solar PV + Battery Energy Storage System to power the beam pump replacing existing diesel generator.

Benefits:

- Reduced cost of operation
- 100% renewable power

Onslow Microgrid

Hybrid microgrid with gas turbine, solar PV and Battery Energy Storage System to supply the township of Onslow.

Benefits:

- Reduce carbon emission
- Lower electricity cost
- Increased supply reliability

Source: Horizon power

Summary

3

Type of microgrids

Optimisation

Control

Protection and metering

Electrical Infrastructure

DER

Microgrid Architecture

3

Type of inverters

3

Case studies

Where next?

Presenter: Victor Dunand