AOG 2019

LNG bunkering technical and training challenges – an update

Lloyd’s Register
15th March 2019
LNG bunkering – Where Technology Meets Logistics

- MARPOL ANNEX VI – Sulphur in Fuel Oil Limits
- LNG Bunkering Port Development
- LNG Bunkering Challenges
- The Human Element in LNG bunkering operations
- Wrap up
MARPOL ANNEX VI

Sulphur in Fuel Oil Limits

China to expand ECA to cover all territorial waters

Chinese government has proposed a plan to make the entire territorial waters subject to a 0.5% sulphur cap from January 1, 2019. Beijing’s schedule will be 12 months head of that of the International Maritime Organization deadline.

Options? Cost? Availability? Quality?
SAFETY? Operations?
Enforcement?
IMO? ISO?
What? When? How?
Anticipated market take up for 2020 for SOx compliance

Conventional option
MGO, ULSFO and VLSFO
Up to 0.10 S % m/m inside a SOx ECA
and up to 0.50 S % m/m outside SOx ECA

2000+ HSFO + EGCS ships

58,000+ ships on international trade

118 LNG fuelled ships excl. GC
not including LNG carriers

151 LNG fuelled ships on order excl. GC

7 methanol ships

4 methanol ships on order

16+ battery ships

Numbers approximate
Lloyd's Register
IMO Availability study

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>Demand forecast for 2020 (mill MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFO (scrubbed)</td>
<td>36 (11%)</td>
</tr>
<tr>
<td>Max 0.10% sulphur fuels</td>
<td>39 (12%)</td>
</tr>
<tr>
<td>Fuels between 0.10% and 0.50% sulphur</td>
<td>233 (73%)</td>
</tr>
<tr>
<td>LNG</td>
<td>12 (4%)</td>
</tr>
<tr>
<td>Total</td>
<td>320 (100%)</td>
</tr>
</tbody>
</table>

Today – closer to 15 M M/T

Optimistic?
Factors influencing use of LNG as a Marine Propulsion fuel

- Marine emission requirements
 - MARPOL Annex VI – NOx & SOx Emissions
- Stable LNG Fuel prices
- Development of reliable Dual fuel engines
- Promotion of LNG as the preferred fuel by Governments
LNG Bunkering Port Development

Existing and planned LNG bunker ports plus many more.....

<table>
<thead>
<tr>
<th>Aarhus</th>
<th>Amsterdam</th>
<th>Antwerp</th>
<th>Bergen</th>
<th>Bodø</th>
<th>Bremerhaven</th>
<th>Brunsbüttel</th>
<th>Buenos Aires</th>
<th>Busan</th>
<th>Copenhagen</th>
<th>Ferrol</th>
<th>Florø</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Port Fourchon</td>
<td>Fredrikstad</td>
<td>Fujairah</td>
<td>Ghent</td>
<td>Gijón</td>
<td>Gothenburg</td>
<td>Hamburg</td>
<td>Helsinki</td>
<td>Hirtshals</td>
<td>Incheon</td>
<td>Karmøy</td>
</tr>
<tr>
<td></td>
<td>Le Havre</td>
<td>Long Beach</td>
<td>Los Angeles</td>
<td>Lübeck</td>
<td>Lysekil</td>
<td>Mongstad</td>
<td>Nanjing</td>
<td>Nynäsham</td>
<td>Oslo</td>
<td>Oulu</td>
<td>Roscoff</td>
</tr>
<tr>
<td></td>
<td>Santander</td>
<td>Singapore</td>
<td>Stavanger</td>
<td>Stockholm</td>
<td>Talinn</td>
<td>Turku</td>
<td>Wilhelmshaven</td>
<td>Zeebrugge</td>
<td>Zhoushan</td>
<td>Zwijndrecht</td>
<td></td>
</tr>
</tbody>
</table>
Why are low flash alternative fuels more hazardous than traditional fuel oil?

<table>
<thead>
<tr>
<th></th>
<th>Cryogenic Burns</th>
<th>Low Temperature Embrittlement</th>
<th>Rapid Phase Transition (RPT)</th>
<th>Gas Expansion</th>
<th>Pool Fire/Flash Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Liquid contact with skin will cause burns and can result in fatality</td>
<td>Equipment/structures can fail on contact with liquid</td>
<td>Released onto the sea a near instantaneous ‘explosive’ transition from liquid to gas can occur. This can result in structural damage to the hull</td>
<td>A liquid pool rapidly boils, and as the gas warms and expands it requires a volume 600 times that of the liquid</td>
<td>Pool fire. The intensity of the radiation can cause fatal injury and fail structure and critical equipment</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Lloyd's Register
LNG Bunkering

- Truck to Ship (TTS)
 - Small volume bunkering (100m³/hr maximum transfer)
 - ISO tank = 40m³
 - Bunkering same side of vessel as other operations
 - Low infrastructure cost
- Ship to Ship (STS)
 - Mature technology from LNG tankers
 - Larger transfer rates
LNG Bunkering Challenges

Deep Sea Shipping

- LNG receiving ship (design and technology)
- LNG bunkering/delivery ship (design and technology)
- The interphase between LNG receiving and delivery ships (custody transfer)
Enabling LNG bunkering for deep sea shipping

- IGF code ELF 1 January 2017
- BS EN 1472-2; 2008 (BSI 2009)
- ISO 28460 (ISO 2010)
- ISO /TS 18683 (ISO 2015)
- Singapore TR 56
- EMSA LNG bunkering assessments
IGF code

- Purpose - to provide an international standard for ships using low-flashpoint fuel, other than ships covered by the IGC Code
- Adopted by MSC 95 June 2015 - Entry into force on 1st January 2017
- Follows goal based approach
- Risk assessment
 - Detailed requirements for natural gas
 - Other low flash point fuels allowed
 - Not applicable to Gas Carriers – IGC Code applies
Ship Design and Arrangement

- Requirements for shipboard arrangements
- Tank location
 - Sets **deterministic** limits for the spacing between tank boundary and shipside
 - Also allows a **probabilistic** approach – may result in reduced distance but limits the permissible length of the tank
 - On open deck/below deck
- Machinery space concepts
 - Gas safe/ESD Protected
Gas-Safe Machinery Space

- Single failure does not lead to gas leakage
- Fuel piping within machinery space to be double walled/ventilated duct
- Machinery space redundancy not required
- High pressure gas fuel operation permitted
ESD – Protected Machinery Space

- Electrical equipment of non-safe type to be disconnected upon gas detection
- Single walled fuel lines in the machinery space
- Redundancy
 - Machinery spaces
 - Gas Detection
 - Ventilation redundancy
- Fuel Gas pressure less than 1MPa
IGF Code – Other Chapters

7. Material & General Pipe Design
8. Bunkering
9. Fuel Supply to Consumers
10. Power Generation Including Propulsion & Other Gas Consumers
11. Fire Safety
12. Explosion Prevention
13. Ventilation
14. Electrical Installations
15. Control, Monitoring and Safety Systems
16. Manufacture, Workmanship and Testing
17. Drills and Emergency Exercises
18. Operation
19. Training
International GC/GF- Risk Based Design

- Application of Novel Technology accepted by IGC/IGF Codes
- Risk Assessment
Rules and regulations for the classification of ships using gases or other low-flashpoint fuels

- Follows IGF Code, includes LR interpretations
- Functional requirements allows innovation
- **LFPF (GF, NG)** – Machinery Notation **(EG - Ethane, LP-LPG, ML - Methanol etc.)**
- **GR** – Descriptive Note
 - A - AiP
 - S - Structural arrg’t provided
 - T – Fuel storage tank
 - P – Piping systems
 - E – Engines/Boiler
Cardissa

Comp. & Motor RM (Refrigerant Plant)
- 8.2 Tons/Day

Twin Skg.
- FPP X 2 Sets

Main Engine
- Warsila 8L20DF X 3 Sets

Cargo Tanks
- C type, Cylindrical 3,250m³ X 2 Sets

Manifold
- Elevated Manifold & Mid Manifold

16” flange for Liquid & Vapour
10” flange for Liquid, 8” flange for Vapour

9% Nickel, Design pressure 3.5 bar, 0.25%/day BOR

Loading Arm
- 1,100 M³/H

10” for Liquid, 8” for Vapour

Bow Thruster
- 650KW, FPP
The Human Element in LNG bunkering operations

The challenge ahead

- Standards and infrastructure procedures understood and largely maturing.
- LNG bunkering is an activity that will not be able to be quickly adapted to by the usual fuel oil bunkering suspects and **human operator competence needs to be developed and managed for LNG bunkering applications**.

Unlike conventional liquid oil bunkering which is a simple means of fuelling ships, LNG bunkering carries a much higher risk and requires a level of sophistication not experienced or attained in mainstream shipping thus far.
Making People Aware and Competent in the LNG bunker supply chain

LNG Bunkering where technology meets logistics

Gaps:

- Complete Competency Standards for Gas Bunkering for
 - Bunker Tankers Crew
 - Receiving Ships Crew
 - Bunker Terminals Personnel
- Standards for Gas Bunkering Suppliers and its Personnel

Solutions:

- Creation of Competence Standards to cover gaps – Creating a Syllabus for Complete Training Manual for Gas Bunkering
- Continuous Competency Management System (CCMS)
- STCW approach

1. LNG Bunker Tanker: Deck Officers, Engineer Officers & Ratings
2. LNG-Fuelled Receiving Vessel: Deck Officers, Engineer Officers & Ratings
Wrap up

LNG bunkering – Where technology meets Logistics

• LNG standards, technology and procedures largely mature or maturing.

• Many Ports already LNG bunkering ready or in process of doing so.

• LNG bunkering is not to be confused with liquid oil bunkering and a different set-of skills is required for personnel handling LNG bunkering.
Lloyd’s Register

Please contact:

Jeff Baker
Offshore Business Development Manager Australasia

+61 400 991 754