WATER INTAKE RISERS FOR PRELUDE FLNG

- Prelude FLNG Project Overview
- WIR Concept Selection
- WIR Concept Description
- WIR Installation on FLNG
- Response in Extreme Events
- Fatigue Design
- Flow Induced Vibrations

Mike Efthymiou
Professor of Offshore Engineering,
University of Western Australia (UWA)
DEFINITIONS AND CAUTIONARY NOTE

Resources: Our use of the term “resources” in this announcement includes quantities of oil and gas not yet classified as Securities and Exchange Commission of the United States ("SEC") proved oil and gas reserves or SEC proven mining reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this announcement "Shell", "Shell Group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. "Subsidiaries", "Shell subsidiaries" and "Shell companies" as used in this announcement refer to companies in which Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as "associated companies" or "associates" and companies in which Shell has joint control are referred to as "jointly controlled entities". In this announcement, associates and jointly controlled entities are also referred to as "equity-accounted investments". The term "Shell interest" is used for convenience to indicate the direct and/ or indirect (for example, through our 23 per cent shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This announcement contains forward looking statements concerning the financial condition, results of operations and businesses of Shell and the Shell Group. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Shell and the Shell Group to market risks and statements expressing management’s expectations, beliefs, forecasts, projections and assumptions. These forward looking statements are identified by their use of terms and phrases such as "anticipate", "believe", "could", "estimate", "expect", "goals", "intend", "may", "objectives", "outlook", "plan", "probably", "project", "risks", "seek", "should", "target", "will" and similar terms and phrases. There are a number of factors that could affect the future operations of Shell and the Shell Group and could cause those results to differ materially from those expressed in the forward looking statements included in this announcement, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward looking statements contained in this announcement are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward looking statements. Additional factors that may affect future results are contained in Shell’s 20-F for the year ended 31 December 2011 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward looking statement speaks only as of the date of this presentation, March 2013. Neither Shell nor any of its subsidiaries nor the Shell Group undertake any obligation to publicly update or revise any forward looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward looking statements contained in this announcement.

Shell may have used certain terms, such as resources, in this announcement that the SEC strictly prohibits Shell from including in its filings with the SEC. U.S. investors are urged to consider closely the disclosure in Shell’s Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

Copyright of Shell International Exploration and Production BV

March 2015
PRELUDE FLOATING LNG

- Facilities for gas production, liquefaction, storage of LNG, LPG and condensate & direct offloading to market – all on FLNG
- Designed to be permanently connected and permanently manned
- Hull, Topside structures, moorings, risers all designed to survive 10,000 year environmental conditions, including tropical cyclones
- FLNG Facility is 488m long, 74m wide – largest vessel ever

- LNG Production: 3.6 mtpa
- LPG Production: 0.4 mtpa
- Condensate: 1.3 mtpa
FLNG CONSTRUCTION – Hull floated out of dry dock Dec 2013
Module 3P1 being lifted from Quayside (left photo) onto FLNG (right photo) using floating crane. Lift weight 2900mT.
LIQUEFICATION PROCESS

- Liquefaction process requires large volumes of cooling water
- Cold water boosts the process efficiency ~ more LNG production
- Dual Mixed Refrigerant successfully applied in Sakhalin and chosen for Shell FLNG
- Small footprint
WATER INTAKE RISERS – FUNCTIONAL REQUIREMENTS

Key Functional Requirements:
- Deliver 50,000 m³/h of cooling water
- Water intake depth: 150m below sea level
- Sparing philosophy: Allow for 1 spare riser
- Retractable for maintenance & inspection
- 25 years of service life

Avoid collision with moorings & risers

Typical water temperature profile in NW Australia

Temperature (°C)

6-10 °C
WIR – CONCEPT SELECTION

Individual risers

- Easy change-out
- Interferes with marine activity
- Requires protection balcony
- Large footprint on deck (piping)

Riser Bundle

- Protected from boat impact
- Small footprint
- Dedicated crane to retrieve riser

Rubber

- Flexible – can accommodate vessel motion
- Unknown failure modes
- Difficult life time prediction

Steel

- Extensive experience
- Weight just right
- Rubber only at hull interface
STEEL WATER INTAKE RISER BUNDLE

Copyright of Shell International Exploration and Production BV

Copyright of Shell Projects & Technology

March 2013
Riser hang-off system
Dynamic Performance of the WIR

Performance Criteria

- Von-Mises Stress below yield in 10,000 yrs cyclone conditions
- No collision with flexible risers and mooring lines
- No compression in rubber hose in 10,000 yrs cyclone conditions
- Fatigue life of 25 years with a safety factor of 10

Unique challenges for a water intake riser bundle

1. Large internal flow in the pipe
2. Vortex-induced vibration of a riser bundle in a current
Effect of internal flow in the pipe

Before investigation

Theory Unstable behaviour for $U_f > 0$ m/s

Experiments Stable behaviour
Experiments at Delft Hydraulics
Experiments at Delft Hydraulics
EFFECT OF INTERNAL FLOW IN THE PIPE
Effect of internal flow in the pipe

Before investigation

Theory Unstable behaviour for $U_f > 0$ m/s

Experiments Stable behaviour

After investigation

Theory Unstable behaviour for $U_f > $ critical speed

Experiments Complex unstable behaviour for $U_f > $ critical speed
Vortex-induced vibrations of an individual riser

VIV characteristics

- Natural frequency = Shedding Frequency of Vortices
- Amplitude ~ 1 x diameter
Vortex-induced vibrations of a riser bundle

OPTION 1

OPTION 2
Vortex-induced vibrations of a riser bundle

- Scale 1:45 (Length of model is 3.3 m)
- Risers slide through spacers
Vortex-induced vibrations of a riser bundle

OPTION 3

SUPPRESSION OPTION
Vortex-induced vibrations of a riser bundle
Vortex-induced vibrations of a riser bundle
Installation of water intake riser bundle

- Structural riser is stored on deck of the FLNG vessel
- Hang first piece of structural riser in riser assembly tower
- Build riser piece by piece until completion
- Structural riser is assembled
Piece by piece built from Rat on flng vessel

- Connect structural riser to rigging
- Lower riser and disconnect pedestal crane using a ROV
- Reconnect and retrieve riser with pedestal crane, connect top part
- Water intake riser is installed from FLNG vessel
PRELUDE WI RISERS: Innovations Taking Shape

- As far as possible PRELUDE uses proven and tested systems and components brought together in innovative ways – However, some new concepts e.g. Offloading Arms, WIR

- **WI Risers:** Largest ever in terms of throughput; new concept, new components, new phenomena (in-flow induced vibrations, bundle riser VIV, Riser Hanger Assembly)

- Design development went through a **maturation process**, including small-scale tests, prototype experiments and CFD analyses

- De-risking of New Technology through FEED, Detailed Design & Construction to ensure full-size systems perform as intended – In a multi-billion $ project …get it right 1st time