Large Scale Erosion Testing of a Flexible Flowline

Sjef IJzermans, MSc
Subsea Engineer – Flexible Pipe

Jan Fredrik Helgaker, PhD
Engineer, Well & Flow Technology

Perth, AOG Conference
12 March 2015
Disclaimer and important notice

This presentation contains forward looking statements that are subject to risk factors associated with oil and gas businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to: price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimates, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory developments, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

All references to dollars, cents or $ in this presentation are to US currency, unless otherwise stated.

References to “Woodside” may be references to Woodside Petroleum Ltd. or its applicable subsidiaries.
Agenda

• Introduction
• New Technology Identification and Qualification Process
• Qualification Execution (Presented by DNV GL)
 • Rig Design
 • Erosion Test Campaign
 • Benchmarking Assessment
• Conclusion
Introduction

- Woodside is currently developing a subsea tie-back on the North West Shelf
- The concept contains a 12 inch inner diameter (ID) flexible flowline and a 12 inch nominal bore (NB) rigid riser
- The production system will produce gas at elevated velocities (30 m/s in the flowline) due to constraints in existing infrastructure
- The design velocity of the flexible flowline is 40 m/s which was classified as new technology and had to be qualified for the project
Introduction - Flexible Pipe Technology

- The carcass is composed of interlocked steel strips
- The carcass provides collapse resistance to the structure
- The carcass is exposed to bore fluids and solids at high velocity and will erode over time
- 25-50% of strip thickness is a general erosion allowance
- Actual allowable erosion follows from remaining collapse resistance

Source: http://fps.nov.com/
Source: API RP 17B
The qualification process was performed in accordance with Woodside's New Technology Identification and Qualification Procedure (Based on DNV-RP-A203 & API RP 17N)

The following steps are involved in the qualification process:

- STEP 1: Identification and Classification
- STEP 2: Qualification Planning
- STEP 3: Execute → Statement of Release

STEP 1 Determined:
The flexible flowline option is a candidate for qualification and is to be entered into a qualification program.
Tests are constrained by health and safety requirements, test facility limitations, pipe sample availability and time. This results in a difference between test conditions and field conditions as presented below:

<table>
<thead>
<tr>
<th></th>
<th>Laboratory</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>9.75”</td>
<td>12”</td>
</tr>
<tr>
<td>Minimum Bend Radius</td>
<td>2.5 m</td>
<td>3.3 m</td>
</tr>
<tr>
<td>Density</td>
<td>1.2 kg/m³</td>
<td>44.7 / 28.1 kg/m³</td>
</tr>
<tr>
<td>Carcass Geometry</td>
<td>As per available sample</td>
<td>TBA</td>
</tr>
<tr>
<td>Silica Sand</td>
<td>150µm / 250µm / 550µm</td>
<td>25µm / 100µm</td>
</tr>
<tr>
<td>Proppants</td>
<td>780 µm</td>
<td>780 µm</td>
</tr>
</tbody>
</table>

Benchmarking against erosion prediction models required.
Perform erosion tests at lab conditions (API RP 17B)

Calculate erosion for lab conditions (DNV-RP-O501, Erbend & Computational Fluid Dynamics (CFD))

Compare empirical results against analytical results and derive adjustment factors

Calculate “Field” erosion with revised methodology

Verify project specific collapse resistance of the flexible pipe
Large Scale Erosion Testing of a Flexible Flowline

Australasian Oil & Gas Conference 2015
DNV GL – Process laboratory

- DNV GL involved in research and development within the field of sand erosion and sand management since early 1980’s
- Two flow loops with possibility of sand injection: 3-4" multiphase flow loop (air/CO2, oil (stabilised), water and chemicals) and 10" full scale rig (air)
- Test results form the basis of the DNV-RP-O501 “Erosive Wear in Piping Systems”
- DNV GL commissioned by Woodside to perform erosion testing of a 9.75" flexible flowline
Erosion

- Sand is an inevitable by-product during oil and gas production
- Sand production may have a detrimental impact on system integrity and availability due to erosion
- Erosion depends strongly on the particle impact velocity, i.e. bulk flow velocity
- Dependency is given by the material constant \(n \). For steel \(n = 2.6 \)

\[
Erosion \sim K \cdot m \cdot F(\alpha) \cdot U_p^n
\]

Doubling the flow velocity increases the erosion rate by a factor of SIX!
Test facility

Side view

Sand feed unit

Centrifugal fan

Flexible flowline

Filter box 13 m³
3.3 m x 2.5 m x 1.5 m
Test conditions

- 15 days of testing performed in January 2014
- Test fluid: Air at atmospheric conditions (ρ = 1.22 kg/m³)
- Velocity range: 30 – 47 m/s
- Total sand load: 8 tonnes
- 14 tests performed, each test repeated 3 times to ensure repeatability
- 4 particle size:
 - 150 µm
 - 250 µm sand particles
 - 550 µm
 - 20/40 Proppants (780 µm)
Execution of erosion test

- Erosion determined by two measurement techniques
 - Weight loss measurement which is industry standard but not applicable for flexible carcass
 - Carcass cross section thickness determined by microscopy analyses
- Leading edge erosion observed
Erosion – weight loss measurements

- Erosion determined by weight loss measurements at selected cut out windows (0°, 20°, 40°, 60°, 80°)

\[y = 4 \times 10^{-5}x^{2.5704} \]

\[R^2 = 0.988 \]
Erosion – weight loss measurements

- All tests repeated 3 times to ensure repeatability and consistency

Cumulative erosion 150 µm sand particles 47 m/s

Erosion as a function of angle – 150 µm sand particles 47 m/s
Erosion – microscopy measurements

- Erosion not uniformly distributed along carcass strip.
- 5 virgin samples measured to get a benchmark of the strip thickness
- Comparison of the measured results against the average virgin thickness clearly shows leading edge erosion
- Leading edge erosion phenomenon has never been considered in the design of flexibles – New to the industry
Benchmarking Assessment

- Objective of benchmarking assessment
 - Compare test results against industry standard calculation methodologies and develop a method for predicting erosion in flexibles
 - Estimate erosion for field conditions

- Benchmarking scope consisted of the following
 - Calculation of erosion with DNV-RP-O501, DNV ERBEND and CFD
 - Comparison of analytical results against test results
 - Extrapolation to field conditions; i.e. higher density, increased bend radius, larger ID and smaller particles (fines with diameter of 25 µm)
 - Sensitivity of carcass geometry variation and reverse flow to determine the effect of changes in carcass (carcass geometry varies per vendor)
Benchmarking assessment

- Comparison of DNV-RP-O501 and DNV ERBEND against test results have shown that the average erosion for silica sand is underestimated.
- Both methods overestimate the average erosion for proppants.
- DNV-RP-O501 and DNV ERBEND do not take into account the erosion at the leading edge.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Method</th>
<th>Average erosion (mm/Te)</th>
<th>Average erosion test (mm/Te)</th>
<th>Ratio Test/Calc</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 μm silica sand, 47 m/s</td>
<td>DNV-RP-O501</td>
<td>0.057</td>
<td>0.077</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>DNV ERBEND</td>
<td>0.055</td>
<td>0.077</td>
<td>1.4</td>
</tr>
<tr>
<td>550 μm silica sand, 30 m/s</td>
<td>DNV-RP-O501</td>
<td>0.017</td>
<td>0.022</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>DNV ERBEND</td>
<td>0.012</td>
<td>0.022</td>
<td>1.8</td>
</tr>
<tr>
<td>Proppant 40 m/s</td>
<td>DNV-RP-O501</td>
<td>0.036</td>
<td>0.010</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>DNV ERBEND</td>
<td>0.030</td>
<td>0.010</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Benchmarking assessment

- CFD model (Ansys CFX) contains a short section of carcass geometry
- A very fine mesh was required increasing simulation time
- Erosion is calculated with the DNV GL response model
- CFD was found to predict leading edge erosion
Benchmarking assessment

- Reasonable good agreement for CFD but potential for large fluctuations
- Generally good agreement between DNV-RP-O501, DNV ERBEND and tests
- Correction factors to be applied when calculating erosion in flexibles

![Erosion rate of sample at 20 degrees
Benchmarking 3D CFD and microscopy](image)
Benchmarking Assessment - Results

- Predicted erosion in a flexible flowline using DNV-RP-O501 for field conditions with adjustment and safety factors is presented below.
- The total erosion of 0.50 mm for a velocity of 40 m/s was confirmed acceptable by flexible vendor.

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Total Erosion (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 m/s</td>
<td>0.23</td>
</tr>
<tr>
<td>35 m/s</td>
<td>0.35</td>
</tr>
<tr>
<td>40 m/s</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Conclusions

- The analysed flexible flowline can be operated at 30 m/s and a design velocity of 40 m/s can be accepted.
- Key finding of the test campaign is that localised erosion can be expected at the leading edge of the carcass.
- Commonly used industry erosion prediction tools DNV-RP-O501 and ERBEND are unconservative for flexible pipe and should be adjusted with correction factors based on empirical data.
- CFD was found to predict leading edge erosion but did not reliably predict the magnitude of erosion.
- For the flowline under consideration, the flexible pipe vendor confirmed that the effect of localised erosion on collapse resistance is acceptable.
- The successful completion of the qualification program opens up the use of flexible pipe in gas production service.
Large Scale Erosion Testing of a Flexible Flowline

Questions?